An Efficient Software Fault Prediction Model using Cluster based Classification
نویسندگان
چکیده
Predicting fault -prone software components is an economically important activity due to limited budget allocation for software testing. In recent years data mining techniques are used to predict the software faults .In this research, we present a cluster based fault prediction classifiers which increases the probability of detection. The expectation from a predictor is to get very high probability of detection to get more reliable and test effective software. In our experiments, we used fault data from mission critical systems. In this paper we have used discretization as preprocessing and cluster based classification for prediction of fault-prone software modules. Clustering based classification allows production of comprehensible models of software faults exploiting symbolic learning algorithms. To evaluate this approach we perform an extensive comparative analysis with benchmark results of software fault prediction for the same data sets. Our proposed model shows better results than the standard and benchmark approaches for software fault prediction. Our proposed model gives superior probability of detection (pd) 83.3% and balance rates 685%.
منابع مشابه
Fault Prediction in Object-Oriented Software Using Neural Network Techniques
To remain competitive in the dynamic world of software development, organizations must optimize the usage of their limited resources to deliver quality products on time and within budget. This requires prevention of fault introduction and quick discovery and repair of residual faults. In this paper a new approach for predicting and classification of faults in object-oriented software systems is...
متن کاملSoftware Fault Prediction Model for Embedded Systems: A Novel finding
Software testing plays a vital role in software development especially when the software developed is mission, safety and business critical applications. Software testing is the most time consuming and costly phase. Prediction of a modules info fault-prone and non fault prone prior to testing is one of the cost effective technique. Predicting a safe module as faulty increases the cost of projec...
متن کاملEvaluation of Classifiers in Software Fault-Proneness Prediction
Reliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one ...
متن کاملSoftware Fault-proneness Prediction using Random Forest
Many metric-based classification models have been developed and applied to software fault-proneness prediction. This paper presents a novel prediction model using Random Forest classifier. Random Forest (RF) can be a promising candidate for software quality prediction because it is one of the most accurate classification algorithms available and has strengths in noise handling and efficient run...
متن کاملA Framework for Analyzing Software Quality using Hierarchical Clustering
Fault proneness data available in the early software life cycle from previous releases or similar kind of projects will aid in improving software quality estimations. Various techniques have been proposed in the literature which includes statistical method, machine learning methods, neural network techniques and clustering techniques for the prediction of faulty and non faulty modules in the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014